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A Review of Research Methods for Stator
Temperature Monitoring in PMSM

Songze Zhao, Puqi Ning, Senior Member, IEEE, Tao Fan, Senior Member, IEEE, Xiaoshuang Hui, and Qibiao Shi

Abstract—High-density permanent magnet synchronous
motors (PMSMs) are widely used in electric drive systems.
However, they are susceptible to temperature influences under
complex operating conditions, and prolonged operation at high
temperatures can first damage the stator winding insulation,
which in turn will damage the windings themselves and cause
faults. Therefore, stator temperature monitoring is of crucial
importance. This paper summarizes the existing temperature
monitoring technologies for stator windings of permanent
magnet motors, compares the advantages and disadvantages of
various methods to help researchers understand this technology,
and analyzes its opportunities and challenges, followed by an
outlook.

Index Terms—Permanent magnet synchronous motors
(PMSMs), Stator winding, Temperature monitoring and
estimation.

I. INTRODUCTION

LECTRIC motors serve as the core component for

electromechanical energy conversion and play a pivotal
role in achieving the “dual-carbon” (carbon peaking and
carbon neutrality) goals. Among various motor types,
permanent magnet synchronous motors (PMSMs) hold
particular significance in the electric vehicle (EV) sector [1]-
[2], primarily attributed to their inherent advantages of high
dynamic response, excellent reliability, high torque density,
and superior efficiency [3]-[4]. Driven by the advancement of
high-performance rare-earth permanent magnet materials and
advanced motor control technologies, the installed capacity
ratio of permanent magnet motors in the EV drive system
reached 94.4% in 2021 [5]-[6]. Nevertheless, China’s new
energy vehicle (NEV) industry still confronts prominent
challenges, such as the insufficient innovation capability in
core technologies and the urgent need to optimize quality
assurance systems [7]. As one of the three core components of
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NEVs (alongside power batteries and electronic control
systems), the operational reliability of drive motors has
garnered extensive attention from the academic community
[8]-[9]. In practical vehicle operation, PMSMs, as the key
driving component, are highly susceptible to external adverse
factors (e.g., mechanical vibration, environmental moisture).
More critically, they tend to experience overheating issues
under complex operating conditions (e.g., high-load
acceleration, continuous climbing). Fig. 1 delineates the
relationship between motor operating temperature (7) and
stator winding insulation life across different insulation
classes. Notably, a well-recognized empirical rule in motor
engineering indicates that for every 10 °C increase in the
operating temperature of the stator winding (beyond its rated
insulation temperature), the insulation life of the motor will be
reduced by approximately 50% [10]. This phenomenon

further emphasizes the urgency of effective thermal
management for PMSMs in NEV applications.
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Fig. 1. The influence of temperature on the insulation life of motors [10].

Contemporary research consistently identifies
overheatingas a primary contributing factor to permanent
magnet motor failures [11], with specific failure mechanisms
and correlation patterns illustrated in Fig. 2. Prolonged
overheating not only accelerates stator winding insulation
degradation (a critical failure precursor) but also triggers
adverse consequences including irreversible damage to key
components (e.g., permanent magnet demagnetization,
bearing wear), reduced service life, and declined drive system
reliability [12]. Against this backdrop, accurate temperature
estimation and real-time temperature monitoring have
emerged as pivotal technologies for ensuring safe and optimal
operation of permanent magnet motors, as they enable
proactive identification of potential thermal risks and provide
essential data support for dynamic adjustment of motor
control strategies (e.g., load redistribution, torque limitation),
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thereby  mitigating overheating-induced failures and
safeguarding motor performance within the optimal operating
range.
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Fig. 2. The main factors causing motor damage [11].

From the implementation perspective, stator temperature
monitoring methods are primarily categorized into direct
measurement methods and indirect measurement methods.
From a technical standpoint, existing motor stator temperature
estimation and monitoring technologies can be further
classified into four main types, namely sensor-based
monitoring, thermal model-based monitoring, electrical
model-based monitoring, and data-driven algorithm-based
monitoring, with their specific classification system and
technical scope illustrated in Fig. 3.
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Fig. 3. Classification of stator winding temperature monitoring methods.

Although existing studies encompass both mature and
emerging research directions, a systematic overview of motor
stator winding temperature monitoring and estimation
technologies remains lacking. This paper aims to
systematically summarize and classify domestic and
international research on these technologies, conduct in-depth
discussions, identify the limitations of current studies, and
prospect future development trends.

Compared with existing review articles, this paper has two
key innovative points and differentiators: First, in terms of
classification logic, it not only covers the four mainstream
technical categories but also further refines the sub-types
under each category (e.g., dividing lumped parameter thermal
network (LPTN) in thermal model-based methods into white-
box, gray-box, and deep gray-box models based on node
division granularity) to form a more hierarchical technical
framework. Second, in terms of content coverage, it

emphasizes the cross-integration of different technologies
(e.g., the combination of data-driven algorithms with LPTN
parameter identification, the coupling of finite element
analysis (FEA) and computational fluid dynamics (CFD) in
thermal simulation) and supplements the latest research
progress (2022-2024) in fields such as data-driven algorithms
for temperature estimation, which fills the gap of insufficient
coverage of cutting-edge technologies in existing reviews.

The structure of this paper is organized as follows: Section
IT analyzes sensor-based monitoring technologies; Section III
summarizes temperature estimation technologies based on
thermal models (including FEA, CFD, and LPTN
technologies) along with their application prospects; Section
IV focuses on temperature estimation technologies based on
electrical models, with an emphasis on introducing the
thermally sensitive electrical parameter method and its
development prospects; Section V summarizes temperature
estimation technologies based on data-driven algorithms; and
Section VI outlines the development trends and key
challenges of related technologies.

II. SENSOR-BASED STATOR WINDING TEMPERATURE
MONITORING METHOD

The sensor-based stator winding temperature monitoring
technology is mature, functioning as a direct and
straightforward method while also being widely used for
experimental  verification. This technology measures
temperature directly via thermosensitive devices and can be
categorized into two types: contact-type and non-contact-type
temperature ~ measurement.  Contact-type  temperature
measurement mainly depends on electronic sensors, which are
deployed through surface-mounted devices [13]-[15] (e.g.,
thermocouples, thermal resistors, fiber Bragg grating (FBG)
sensors [16], etc.), whereas non-contact-type temperature
measurement typically relies primarily on infrared sensors.
Benefiting from advantages such as high accuracy, high
sensitivity, a broad temperature measurement range, and low
cost, this type of method is frequently employed as the
reference for actual temperature in experimental comparison
and verification. Nevertheless, it is constrained by the number
and installation positions of sensors and is vulnerable to
electromagnetic interference inside the motor, factors that
ultimately lead to a decrease in temperature measurement
accuracy.

A. Contact Sensor-based Temperature Measurement

Commonly used electronic sensors mainly include
thermocouples [17]-[19], thermal resistors, and thermistors. In
one research study, [20] installed 37 PT100 temperature
sensors at key stator positions (including slot windings, end
windings, stator teeth, yokes, and casings) of a 10 kW
PMSM-with the sensor layout shown in Fig. 4 and arranged
uniformly. These sensors were used to provide true value
verification for the three-dimensional thermal network model;
however, this method has drawbacks such as complex
hardware configuration and large wiring volume.
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Fig. 4. Overall sensor layout distribution map [22].

In [21], 10 PT100 sensors were arranged on an interior
permanent magnet synchronous motor (IPMSM), and infrared
probes were additionally installed. By combining contact and
non-contact temperature measurement methods, the study
obtained true temperature values for verifying the LPTN
method, achieving a relatively small measurement error.
Reference [22] also utilized PT100 sensors to monitor the
temperature of key components (including slot windings and
end windings) of the prototype motor, with the measured data
serving as the true value for verifying the 3D finite element
model. Reference [23] symmetrically embedded 6 K-type
thermocouples at the tooth tips of the end part of a 12-slot 10-
pole prototype motor to monitor temperature, which was used
to validate the estimation results of the discrete loss thermal
network model. Reference [24] pre-embedded PT100 sensors
in the stator windings of an ultra-high-speed motor to monitor
the actual operating temperature, and the collected data were
applied to verify the simulation results.

As early as 2002 [25], a study proposed FBG as a novel
contact-type temperature measurement method. Its working
principle is as follows: When broadband light is incident on
an FBG, the grating reflects light that satisfies the Bragg
wavelength condition while transmitting light of other
wavelengths; since the Bragg wavelength can be modulated
by external temperature and strain, temperature sensing is
thereby realized (Fig. 5). This method has been applied in
various fields such as biomedical sensing, respiratory
monitoring, and structural health monitoring. In the power
industry, compared with sensors like thermal resistors, FBG
sensors are not affected by electromagnetic interference and
feature a small size [26]-[29]. However, they suffer from
drawbacks, including complex installation and maintenance
processes as well as high costs.
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Fig. 5. The sensing principle of FBGs.

In the early stage of partial discharge in motor windings, a
phenomenon of sharp temperature rise will occur; therefore,
the winding temperature can be used as a basis for detecting
the degree of insulation degradation. Many researchers have
applied FBG sensing technology to the temperature
monitoring of motor stators. The sensor designed in [30] (Fig.
6) is encapsulated with a capillary steel tube and filled with
modified acrylate. This design increases the temperature
sensitivity by 2.7 times, with an operating temperature range
of -30-120 °C, a measurement accuracy of +0.5 °C, and a
resolution of 0.1 °C.
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Fig. 6. Capillary steel tube-encapsulated FBG stator temperature sensor [30].

In-situ FBG sensors were employed in [31] to monitor the
thermal characteristics of windings for inter-turn short-circuit
detection, verifying their capability to detect single-turn and
multi-turn short-circuits. Reference [32] developed an FBG-
based multi-parameter system, which can realize real-time
temperature measurement and visualize hotspots by
combining with 3D modeling. Comparative verification in
[33] shows that the temperature measurement response time
of FBGs is shorter than that of platinum resistors, and they are
superior in monitoring local hotspots. Reference [34]
estimated the remaining life of windings based on the
temperature values measured by in-situ FBG sensors,
providing a basis for motor control, waste prevention, and
accident prevention. Table I presents a comparison of current
mainstream electronic sensors.
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B.  Non-contact Sensor-based Temperature Measurement

Non-contact temperature measurement primarily relies on
the infrared method, which employs infrared thermal imagers
and radiation sensors (Fig. 7). The measurement process
involves focusing the infrared radiation emitted by a target
object through a lens; after the detector converts and
processes the radiation signal, the surface temperature is
calculated by integrating emissivity parameters and relevant
algorithms. This method is commonly used for temperature
measurement of motor rotors or casings, featuring low
requirements on the structure of the measured object and no
adverse impact on system balance, along with the advantages
of high resolution, high accuracy, and fast response. However,
it is highly susceptible to environmental interference (e.g.,
ambient temperature fluctuations, dust). Infrared thermal
imagers can directly display thermal distribution images and
have been applied in temperature measurement of motor
windings and permanent magnets [35]-[36].

In [35], an industrial infrared thermometer was aligned with
the rotating field winding, and the pole face temperature was
obtained through error correction and signal conversion. After
calibration, the dynamic monitoring error was approximately
+2 °C, providing reliable temperature data for constructing the
generator’s active power—reactive power (P-Q) diagram.
Nevertheless, this method only captures the average surface
temperature; significant measurement errors may occur when
there is a large temperature difference between poles or when
the measurement angle is improperly set. Reference [37]
employs infrared thermography to detect the motor’s surface
temperature and uses a heat transfer model to estimate the
stator current, while analyzing the impact of measurement
errors on current estimation.
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Fig. 7. The temperature measurement principle of infrared method.

C.  Summary

In summary, sensor-based stator temperature monitoring
methods have achieved mature development, with their
precision and accuracy widely recognized in the field of
electrical engineering. These methods are frequently adopted
as the reference for true temperature values in experimental
comparison and verification, meanwhile, the experimental
data obtained can also be used to assess the rationality of
other temperature estimation or monitoring approaches. Then
its applicable scenarios and limitations are very clear.

Applicable scenarios: Contact-type methods
(thermocouples, PT100, FBG) are suitable for laboratory
verification, motor development and testing, and scenarios
requiring high measurement accuracy (e.g., calibration of
thermal models or electrical models); non-contact infrared
methods are applicable to on-site maintenance of industrial
motors, dynamic monitoring of rotating components (e.g.,
rotor surface), and scenarios where sensor installation is not
feasible (e.g., motors with ultra-compact structures).

Limitations: These limitations include the requirement for
motor structural modification during sensor installation,
complicated on-site deployment procedures, difficulty in
repairing or replacing faulty sensors, high susceptibility to
interference from harsh operating conditions (e.g.,
electromagnetic noise, mechanical vibration), and constraints
related to cost control and spatial layout inside the motor.

III. STATOR WINDING TEMPERATURE ESTIMATION
METHOD BASED ON THERMAL MODEL

Based on the thermal model approach, an LPTN thermal
network model is usually constructed first in accordance with
the motor’s physical geometric model and initial parameters.
Subsequently, combined with the electrical parameters under
operating conditions, thermal parameters are identified
through algorithms to ensure estimation accuracy. This
method relies on reasonable measurement protocols and
specifications, and achieves temperature estimation by solving
the processes of heat generation and heat conduction. It is
mainly categorized into two types: parametric thermal
networks (with LPTN as a typical representative) and
modeling and simulation (with FEA and CFD methods as
typical representatives).

A. Thermal Modeling and Simulation based on FEA and
CFD

FEA and CFD are maturely applied in the thermal
modeling and analysis of PMSMs; they couple and solve the
electromagnetic field and temperature field through two-
dimensional (2D) and three-dimensional (3D) models,
respectively, with the numerical solution of partial differential
equations as the core, enabling accurate acquisition of the
transient temperature rise of permanent magnets and complete
3D temperature distribution. This technology plays a critical
role in the design of motor bodies and cooling water channels,
designers can optimize the internal structure based on
temperature rise analysis to improve motor efficiency and
extend its service life [38]. The core of thermal analysis is
thermal conduction paths and heat transfer mechanisms, so it
is necessary to master the processes of heat generation, heat
transfer, heat absorption, and heat dissipation inside the motor
to establish a reliable thermal model. Fig. 8 illustrates the
internal heat transfer process of the motor (red arrows (Cond)
represent conductive heat flux, green arrows (Conv) represent
convective heat flux, purple arrows (Rad) represent radiative
heat flux), and Fig. 9 presents the combined application
framework of FEA and CFD.
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Fig. 8. The heat transfer process inside the motor [39].
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Fig. 9. Estimation based on FEA and CFD.

FEA subdivides the geometric domain of a target object
into discrete meshes, on which numerical solutions for partial
differential equations (governing heat transfer) are obtained
[40]. Its calculation accuracy is influenced by the equation
discretization method, mesh generation quality, and mesh
quantity; thus, careful design of domain discretization is
essential to ensure the credibility of simulation results [41].
Mesh generation should be carried out in accordance with the
actual motor geometric model: Denser meshes help improve
calculation accuracy, but excessively high mesh density will
significantly increase computational time and complexity.

In motor thermal analysis, FEA enables efficient modeling
of heat transfer processes between solid components (e.g.,
stator core, windings, rotor), with the key advantage of
accurately solving heat conduction problems in structures
with complex geometries. Notably, the refinement degree of
the simulated temperature field depends on both mesh
discretization quality and the rationality of applied boundary
conditions (e.g., convective heat transfer coefficients, ambient
temperature). In [42], a 3D FEA model of a PMSM was
established; after setting appropriate boundary conditions and
simulating heat source input (e.g., copper loss in windings,

iron loss in cores), the overall temperature distribution map of
the motor was obtained (Fig. 10). This map enables clear
visualization of the temperature distribution across all motor
components, with the stator winding temperature displayed
with particular clarity.
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Fig. 10. Temperature distribution of PMSM based on FEA [42].

In conjugate heat transfer (CHT) analysis, the surface heat
transfer coefficient of the motor exhibits an axial variation
[43]. Since CHT involves coupled heat transfer between solid
and fluid (or among multiple fluids), a process influenced by
temperature differences and fluid thermophysical properties,
and exerts a significant impact on the accuracy of FEA results
through the heat transfer coefficient, it must be coupled with
CFD for comprehensive simulation.

For fluid-related problems in motor thermal analysis, CFD
is the preferred approach, as its governing equations (e.g.,
Navier-Stokes equations) can more accurately characterize
changes in fluid flow states (e.g., laminar, turbulent).
Considering the indispensable role of fluid in motor cooling
systems, CFD serves as a key technique for electromechanical
thermal analysis and cooling system design: It incorporates
key convective heat transfer factors, couples with solid heat
conduction to solve for wall temperatures at solid-fluid
interfaces, predicts heat transfer coefficients under turbulent
flow conditions, and offers greater convenience than FEA in
handling CHT problems. CFD was adopted in [44] to conduct
a temperature field simulation of a PMSM, and the resulting
temperature distribution is presented in Fig. 11.

Fig. 11. Temperature distribution of PMSM based on CFD [44].

The optimal approach for motor thermal field simulation is
the coupling of FEA and CFD: Specifically, CFD is used to
capture the spatial variation characteristics of convective heat
transfer coefficients in the motor cooling system, while FEA
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is employed to calculate the internal loss distribution (e.g.,
copper loss, iron loss) of the motor and the subsequent
temperature field distribution. The overall simulation
accuracy of this coupled method depends on two key factors:
the calculation precision of motor internal losses and the
reliability of turbulence models adopted in CFD.

This FEA-CFD coupling method offers several distinct
advantages, including clear visualization of temperature
distribution for individual motor components, high precision
in multi-physics (electromagnetic-thermal-fluid) coupling
simulation, favorable cost-effectiveness, and widespread
application in commercial motor thermal design. However,
the CFD and FEA coupling method encounters real-time
bottlenecks mainly due to its high computational complexity
and time consumption. Both CFD, which simulates fluid flow
and heat transfer by solving complex partial differential
equations, and FEA, which deals with numerous finite
element equations, are computationally intensive. When
coupled, their combined computational load increases
significantly. Moreover, the data interaction between CFD
and FEA is intricate. The coupling process requires multiple
iterations for convergence, and the use of different software
tools for CFD and FEA can lead to data transfer delays and
conversion issues.

Striking a balance between model accuracy and
computational efficiency is challenging yet crucial. While
model simplification can enhance computational speed, it may
compromise accuracy. Achieving high precision inevitably
raises computational demands and time consumption. In
dynamic systems like EVs and in applications requiring
online monitoring and real-time control, the CFD and FEA
coupling method struggles to meet the stringent real-time
requirements due to its lengthy computation and iterative
processes. This restricts its broad application in scenarios
demanding rapid responses.

B.  Temperature Estimation based on LPTN

In the field of stator winding temperature estimation based
on thermal models, the LPTN stands as the mainstream
method. Serving as a temperature estimation and online
monitoring solution that balances accuracy and computational
efficiency, the LPTN “clusters” motor components with
similar temperature characteristics into discrete thermal
nodes, this simplification reduces the network scale and
lowers computational load effectively.

This model adopts the assumption that the internal
temperature of each thermal node is uniform; by dividing the
motor (the research object) into such nodes, the temperature
of each node can be obtained by solving the node-specific
heat balance equation [39]. The overall modeling process of
the LPTN and its associated calculation methods is illustrated
in Fig. 12. Based on differences in node division granularity,
LPTN networks are categorized into three types: highly
discretized white-box models (typically with more than 15
nodes), medium-scale gray-box models (with 5 to 15 nodes),
and the most simplified deep gray-box models (with no more
than 5 nodes).
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Fig. 12. Estimation and monitoring based on LPTN.

1) White Box

White-box LPTN has excessive node division, which
increases computational complexity and time, making it
unsuitable for online temperature monitoring [45].
Nevertheless, its fine node division boosts reliance on motor
material properties and geometric data. Due to low
computational resource consumption, it is often used in motor
development and design [46]; however, its complex structure
and prior data requirement usually limit it to design-aid tools
rather than real-time monitoring models [47]. Reference [48]
bidirectionally = coupled white-box LPTN  with the
electromagnetic field, which not only accurately acquired the
motor’s temperature distribution, electromagnetic
performance and thermal characteristics but also significantly
reduced traditional FEA computational time (a typical model
in Fig. 13). Reference [49] built a 38-node thermal network,
whose high accuracy was verified by comparison with FEA
results and temperature rise test data.
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Fig. 13. Model of white-box LPTN [49].

2)  Gray-box Model

Gray-box thermal network models typically map thermal
nodes to key motor components (e.g., rotor, stator windings)
and are classified into shallow and deep types. The
classification depends on the granularity of node division:
Shallow gray-box models are often employed as embedded
online monitoring tools, while deep gray-box models integrate
both temperature estimation and monitoring functions. This
type of model omits detailed structures such as cooling
channels, resulting in a lightweight architecture that facilitates



ZHAO et al.: AREVIEW OF RESEARCH METHODS FOR STATOR TEMPERATURE MONITORING IN PMSM 413

embedding into motor controllers. However, thermal
parameters, including thermal conduction resistance and
convective heat transfer coefficient, which are difficult to
calculate directly due to the complex structure of motor
components, are mostly identified through experimental data
[50]-[51]. In current research, thermal network models with 2
to 6 nodes are considered most suitable for online temperature
monitoring of motors.

Reference [51] proposed a second-order gray-box thermal
network model that accounts for the thermal effects of end
windings. While this model can predict the average
temperature of stator windings, its low order limits it from
reflecting the overall temperature distribution of the motor.
Reference [52] simplified a 7-node thermal network model to
3 nodes and developed a low-dimensional lumped capacitance
(LCC) model, which reduces implementation costs while
maintaining acceptable temperature estimation accuracy.
Reference [53] constructed a 2-node LPTN model, with stator
core temperature data (collected by sensors) as input; thermal
resistance and thermal capacitance parameters of the model
were identified using thermocouple-measured data, and
subsequent verification confirmed the model’s accuracy and
robustness. Reference [54] proposed a 5-node LPTN model
that considers both radial and axial heat transfer in the motor:
model parameters were identified via multiple linear
regression, motor loss data required for temperature
calculation were obtained using K-type thermocouples, and
the majority of temperature estimation errors were within
+5 °C. Reference [55] established low-order LPTN models
with 3 to 6 nodes (Fig. 14) and adopted the weighted model
iteration-square root extended Kalman filter (WMI-STEKF)
algorithm for temperature estimation. The model achieved
high accuracy with an error of < 3 °C, but the lack of cross-
condition data comparison restricted its applicability in varied
operating scenarios. Reference [56] proposed a 5S-node LPTN
model and used the improved particle swarm optimization
(IPSO) algorithm for parameter identification under different
operating conditions, demonstrating high convergence speed
and estimation accuracy. However, this model failed to
calculate the temperature of other hotspots in the motor
beyond the targeted monitoring nodes.

The LPTN is a mature and widely applied temperature
calculation technology in motor thermal analysis: white-box
LPTN models are suitable for motor thermal compensation
design due to their high discretization and detailed
temperature characterization, while gray-box LPTN models
are well-suited for motor embedded systems, as they can
provide high temperature monitoring accuracy with a
lightweight structure. For stator winding temperature
estimation based on LPTN, this method offers distinct
advantages, including strong applicability to different motor
types, relatively easy model construction, and fast
computational speed. However, it also has inherent
drawbacks: it imposes high requirements on the professional
knowledge of researchers (e.g., in motor thermal dynamics
and node division), and it is challenging to achieve real-time
and accurate identification of thermal parameters when motor
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operating conditions change (e.g., load fluctuations, speed
variations).

The key to improving the accuracy of LPTN-based
temperature estimation lies in the precise identification of
thermal network parameters (e.g., thermal resistance, thermal
capacitance); the rationality of these identified parameters
requires repeated verification through experiments and
simulations. Notably, the accurate identification of thermal
parameters under complex and variable operating conditions
remains an unresolved issue that requires further research. In
the future, two directions are expected to become mainstream
in LPTN-related research: first, expanding traditional 1D
LPTN models to 2D or 3D thermal network models to achieve
more comprehensive acquisition of motor internal temperature
fields (including local hotspots); second, deeply coupling
motor control models with LPTN models, which can reduce
the overall computational load of the system while
maintaining temperature estimation accuracy, thereby
facilitating the integration of LPTN into real-time motor
control systems.

C.  Summary

In summary, the primary thermal model-based methods for
stator winding temperature estimation are FEA/CFD coupling
simulation and LPTN. These two methods have distinct
applicable scenarios, and each comes with its own set of
limitations. The detailed breakdown of their applicable
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contexts and limitations is provided in the following.

Applicable scenarios: FEA/CFD coupling is suitable for
motor design optimization (e.g., cooling channel layout,
material selection), offline thermal performance verification,
and scenarios requiring high-precision temperature field
visualization (e.g., analyzing local hotspots in stator slots);
LPTN (especially gray-box models) is applicable to online
real-time monitoring (e.g., automotive PMSM controllers),
embedded systems with limited computational resources (e.g.,
microcontroller unit (MCU)-based control units), and
scenarios requiring fast temperature response (e.g., transient
load conditions).
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Limitations: FEA/CFD has extremely high computational
costs and cannot meet the real-time requirements of online
monitoring due to its complex calculations and large resource
consumption. LPTN relies on accurate thermal parameter
identification (e.g., thermal resistance, thermal capacitance),
and its estimation accuracy decreases under variable operating
conditions (e.g., load mutations) as it struggles to adapt to
sudden changes. Also, low-order models (2-3 nodes) in LPTN
cannot capture local hotspot temperatures in the stator.

Table II presents a summary of the comparison of thermal-
model-based stator temperature monitoring methods
mentioned in the surveyed literature.

TABLE II
COMPARISON OF DIFFERENT METHODS BASED ON THERMAL MODEL

Estimation method Sub-type Accurary/°C Computation burden Hardware cost Reference
FEA-based 3D full-model +1-3 High High [42]
FEA-based 2D axisymmetric model +3-5 Medium Medium [41]
CFD-based Turbulent model +2-4 High High [44]
CFD-based Laminar model +3-6 Medium Medium [43]
FEA-CFD coupling 3D coupled model +1-2 Very high Very high [38]
LPTN White-box model +1-2 Medium Low [49]
LPTN Gray-box model (5-node) +3-5 Low Low [54]
LPTN Gray-box model (2-node) +5-8 Very Low Low [53]

IV. TEMPERATURE ESTIMATION METHOD BASED ON
ELECTRICAL MODELS

The electrical model of PMSMs plays a crucial role in
multiple fields, serving as the theoretical foundation for
research areas such as motor control, parameter identification,
signal injection, and optimal control strategies [57]-[58]. Its
temperature monitoring principle relies on tracking
temperature-sensitive electrical parameters, which
necessitates parameter estimation during normal operation
while minimizing adverse impacts on operational stability.
However, the electrical mathematical model of PMSMs,
characterized by four variable parameters, strong nonlinearity,
and inherent rank deficiency, imposes limitations on the
estimation accuracy of fundamental frequency model
parameters.

Since PMSM stator windings are predominantly made of
copper (whose resistance exhibits a linear relationship with
temperature), stator winding temperature estimation primarily
depends on accurate winding resistance estimation. Currently,
winding resistance estimation methods can be categorized into
two main types: non-intrusive observer-based methods and
intrusive signal injection-based methods.

A.  Method based on Non-intrusive Observers

In motor control systems, accurate monitoring of stator
resistance is critical for the implementation of high-
performance field-oriented control (FOC); however, online
measurement of stator resistance remains challenging under
complex operating conditions (e.g., variable load, fluctuating
speed). To address this issue, researchers have proposed non-
intrusive estimation methods, including full-order state

observers [59] and adaptive observers [60]. These methods
construct observers based on the PMSM mathematical model
to estimate stator winding resistance, and then derive the
stator winding temperature from the estimated resistance by
utilizing the linear temperature-resistance characteristic of
copper. Nevertheless, the robustness performance of such
observer-based methods is affected by several key factors, and
the technical details can be reflected through the research
findings of relevant literatures.

Model uncertainty is the primary factor affecting observer
robustness. Since observer design relies on an accurate
PMSM model, parameter deviations (e.g., permanent magnet
flux linkage decay due to high temperature, inductance
variation from magnetic saturation) significantly increase
estimation errors. For example, [61] proposed a nonlinear
interconnected observer that can simultaneously estimate
multiple PMSM electrical parameters (including stator
resistance) to support temperature calculation. However, when
the permanent magnet flux linkage deviates by 10% from the
nominal value, the stator resistance estimation error rises from
2% to 8%.

External disturbances and operating condition adaptability
are also critical. Load torque fluctuations and measurement
noise from current/voltage sensors interfere with estimation
accuracy. Reference [62] applied the model reference adaptive
system (MRAS) to estimate stator resistance and convert it to
winding temperature via the resistance-temperature
coefficient. However, this method has limited adaptability: It
performs well under rated speed and load but degrades
sharply at low speeds (near zero speed). This is because the
extremely small back electromotive force (EMF) at low
speeds makes it hard to distinguish the voltage drop caused by
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stator resistance from other components (e.g., inverter
nonlinearity). When speed is below 5% of the rated value, the
resistance estimation error exceeds 10%. Reference [63]
directly demonstrates the impact of external disturbances. It
employed a Kalman filter combined with a thermal model,
using real-time measured electrical and mechanical data (e.g.,
phase current, rotational speed) to simultaneously estimate
stator winding and permanent magnet temperatures.
Experimental results show that under 50% load torque step
change, the transient error of this Kalman filter-based
observer reaches 15%, and it takes 0.5-1 s to recover to a
steady-state error (< 3%).

Besides observer-based methods, the recursive least squares
(RLS) algorithm is also applied in stator resistance estimation.
Reference [64] simplified the PMSM electrical model via
Park transformation and adopted a fast-slow dual RLS
algorithm to identify stator resistance, improving estimation
efficiency. Reference [65] utilized a pre-established offline
PMSM model and online RLS for resistance estimation,
compensating for temperature-induced degradation in motor
control performance.

B.  Method based on Invasive Signal Injection

Intrusive signal injection-based methods for stator winding
resistance (and thus temperature) estimation typically utilize
direct current (DC) signals. Compared with high-frequency
signal injection, DC signal injection avoids the skin effect in
stator windings (an issue that distorts resistance measurement
in high-frequency scenarios) and concurrently reduces
additional hysteresis losses and eddy current losses induced
by alternating signals in the stator core. Fig. 15 presents the
flow chart of this DC injection-based stator winding
temperature estimation method, where the key operational
step lies in accurately extracting the DC component of the
stator current (or voltage) after signal injection; this DC
component serves as the critical input for subsequent winding
resistance calculation and temperature derivation.
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Fig. 15. Flow of signal injection methods.

Reference [66] established a steady-state voltage model for
dual three-phase PMSMs that accounts for voltage source
inverter (VSI) nonlinearity, and realized stator winding
temperature estimation by tracking the voltage difference
derived from this model. Reference [67] proposed a winding
temperature tracking technique based on dual DC current
injection; this method is not affected by VSI nonlinearity, but

the dual-phase current injection tends to increase additional
copper loss in the stator windings, which in turn impairs the
accuracy of temperature estimation.

Reference [68] injected high-frequency voltage into the d-
axis of the IPMSM rotor reference frame model to measure
the high-frequency stator resistance, derived the quantitative
relationship between resistance and temperature using
negative temperature coefficient (NTC) sensor data, and
further constructed an online temperature estimator with good
estimation accuracy. Reference [69] optimized the DC
injection parameters and adjusted the current ratio to improve
temperature estimation accuracy, while also taking into
account the influences of magnetic saturation and signal
injection effects on resistance measurement. Reference [70]
estimated stator winding temperature by combining an
adaptive fuzzy algorithm with an improved DC injection
method; this approach enhanced estimation accuracy through
data fusion, but the dual-operation mechanism (algorithm
calculation + signal injection) complicates the tuning of
model parameters. Reference [71] injected DC voltage into
the a-axis of the stationary reference frame to calculate stator
winding resistance for temperature estimation; however,
sliding mode chattering in the control system and filtering
delay in the signal processing loop limit the dynamic response
speed of resistance estimation.

C.  Summary

Stator winding temperature monitoring based on electrical
models essentially relies on tracking stator resistance, a
temperature-sensitive electrical parameter, with the core
challenge lying in the accurate calculation of this resistance.
The methods are divided into observer-based and signal
injection-based types, with clear applicable scenarios and
limitations.

Applicable scenarios: Observer-based methods are suitable
for closed-loop control systems (e.g., FOC) that require non-
intrusive monitoring (no additional signal injection), and
scenarios with stable operating conditions (rated speed/load,
no severe load mutation); signal injection-based methods are
applicable to low-speed or zero-speed conditions (where
observer-based methods fail due to weak back EMF), and
scenarios that allow minor interference to motor operation
(e.g., EV idle mode, industrial motor start-up phase).

Limitation: Its limitations are that estimation accuracy is
constrained by multiple factors (e.g., VSI nonlinearity,
magnetic saturation) and that intrusive signal injection may
have adverse impacts on motor operational performance (e.g.,
increased losses, torque ripple). Future research work in this
field should focus on reducing the reliance on external
auxiliary equipment, avoiding signal interference in resistance
measurement, and further improving estimation accuracy; in
particular, combining electrical model-based methods with
other temperature monitoring technologies to enhance overall
monitoring accuracy deserves in-depth exploration.

Table III presents a summary of the comparison of
electrical-model-based stator temperature monitoring methods
mentioned in the surveyed literature.
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TABLE III
COMPARISON OF DIFFERENT METHODS BASED ON ELECTRICAL MODEL
Estimation method Sub-type Accurary/°C  Computation burden Hardware cost Reference
Observer-based method Nonlinear interconnected observer +2-4 Medium Low [61]
Observer-based method MRAS observer +3-5 Low Low [62]
Observer-based method Kalman filter + thermal model +1-3 High Medium [65]
Observer-based method Fast-slow dual RLS +2-4 Medium Low [63]
Signal injection-based method Dual DC current injection +2-5 Low Low [67]
Signal injection-based method High-frequency d-axis voltage injection +3-6 Medium Low [68]
Signal injection-based method DC voltage injection (o-axis) +3-5 Low Low [71]
Signal injection-based method Adaptive fuzzy + DC injection +1-4 High Medium [70]

V. TEMPERATURE ESTIMATION METHOD BASED ON DATA-
DRIVEN ALGORITHMS

Data-driven algorithm-based methods rely on large sets of
initial and target parameters, with measured variables
covering electrical, mechanical, and thermal-related
parameters. After sufficient training, they can derive non-
directly measurable parameters from updated measurements.
For motor temperature estimation and monitoring, effective
data-driven algorithms include machine learning and deep
learning. With the development of big data, historical datasets
with high-speed computing capabilities have driven the rapid
advancement of data-driven methods; the overall flow of their
temperature estimation and monitoring is shown in Fig. 16.
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Fig. 16. Estimation and monitoring based on data-driven algorithms.
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For drive modeling, [72] discusses in detail the prediction
accuracy comparison of various drive models, with the the
mean square errors (MSE) of the training sets of different
methods are shown in Fig. 17. Results indicate that algorithms
with better performance (e.g., ordinary least squares (OLS),
multi-layer perceptron (MLP), extremely randomized trees
(ET)) exhibit superior performance when the training set size
is small. Machine learning methods have been proven
effective in estimating and monitoring PMSM temperatures,
and data-driven algorithms demonstrate robustness under
various operating conditions [73].
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Fig. 17. MSE for fixed test set and growing training set [72].

For temperature monitoring of PMSMs, data-driven
algorithm-based methods have gained attention in recent
years. Reference [74] combined geometric models, finite
element method (FEM) simulations, and back propagation
(BP) neural networks, inputting stator parameters to predict
winding temperature with a goodness of fit exceeding
0.99991. Reference [75] utilized existing controller signals
and predicted temperature via a dual-channel multi-scale
convolutional neural network (MCNN) model. Reference [76]
integrated an LPTN model with a data-driven method to
construct a TNN, achieving high prediction accuracy.
Reference [77] proposes a soft sensor method integrating
principal component analysis (PCA) and extreme learning
machine (ELM) to achieve high-precision and low-complexity
prediction  of  stator  winding  temperature  for
PMSMs.Reference [78] adopted a deep residual machine
learning method, enhancing prediction capability through
feature enhancement and residual connections; it identified
coolant temperature as critical for stator temperature
estimation but required repeated training, leading to high time
costs. The advantages and disadvantages of the mainstream
data-driven algorithms are shown in Table IV.

TABLE IV
PROS AND CONS OF MAINSTREAM DATA-DRIVEN ALGORITHMS

Data-driven

algorithms Advantage Disadvantage
Fast, Weak interpretability,
ET anti-overfitting, lower extreme
feature importance accuracy
Simple, . .
OLS efficient, Llnear—onl_yf outlier-
sensitive
sound parameter theory
RF Strong generalization, handles ~ High computation,

(random forest) high dimensions weak interpretability

Strong nonlinear, Needs massive data,

MLP adapts to diverse data slow
SVR Good small-sample Large-data complex,
(support vector encralization Kernel parameter-
regression) g sensitive
KNN Simple, no training, High computation, K-

(k-nearest neighbors) handles nonlinearity sensitive

Data-driven algorithms can be applied to thermal parameter
identification of LPTN thermal networks; typical examples
include particle swarm optimization (PSO), which reduces
knowledge requirements and the randomness of empirical
settings. Reference [51] used multiple linear regression to



ZHAO et al.: AREVIEW OF RESEARCH METHODS FOR STATOR TEMPERATURE MONITORING IN PMSM 417

identify LPTN thermal parameters, but its linear assumption
made it difficult to capture the strong nonlinearity of thermal
resistance, leading to deteriorated residuals after aging;
Reference [55] adopted PSO for parameter identification.

Data-driven algorithms are also integrated into electrical
model parameter identification, offering greater flexibility in
handling complexity and nonlinearity. However, they suffer
from large computational load, along with issues like particle
local optimization and slow convergence, problems that can
be alleviated via algorithm optimization. Reference [79] used
an adaptive PSO algorithm based on the logistic function for
online identification of PMSM parameters, achieving faster
and more accurate convergence. Reference [80] constructed a
state estimator using a Lyapunov-optimized radial basis
function (RBF) neural network, identifying parameter changes
solely based on system states.

Data-driven algorithms provide novel and efficient methods
for parameter identification of motor thermal and electrical
models, with great potential in temperature estimation,
especially new insights for algorithm application and

integration with other methods. Their advantages include
reduced knowledge dependency, strong anti-interference
ability, excellent generalization, distinct targeting, and
visualization benefits. Nevertheless, they face challenges such
as insufficient operating condition coverage in training sets,
increased model errors over time, high power consumption,
low accuracy in multi-output scenarios, and constraints on
data/model updates with complex corrections. Research on
complete data-driven models is worthwhile: Training data
should cover normal and abnormal operating conditions,
while the “selective training” of samples remains unvalidated.
A key issue is whether the model can adaptively adjust
parameters to handle transient conditions. Future exploration
of online learning mechanisms and development of models
with real-time training updates and low power consumption
hold broad prospects. As for the above-mentioned literature
content, Table V summarizes and analyzes the data-driven
algorithms in the literature in terms of data requirements,
training costs, generalization abilities, interpretability, and
application scenarios.

TABLE V
COMPARISON OF VARIOUS DATA-DRIVEN ALGORITHMS
Data-driven . . . Training Generalization - S .
algorithm Data requirements (input variables) cost capability Interpretability ~ Key application scenario ~ Reference
Electrical (current, voltage), mechanical Online monitoring with
ET (speed, torque), and thermal (coolant Low Low Medium limited computational [72]
temperature), total 5—8 variables resources
Electr.lcal (3-phase current, voltage), Multi-condition temperature
mechanical (speed, load torque), thermal . . . L .
RF . Medium Medium Medium estimation (e.g., variable [73]
(coolant, ambient temperature), total 8—12
. speed/load)
variables
el e vl o),
MLP peed, i High Medium Low prediction (e.g., transient [74]
(coolant flow rate, temperature), total 10—15
. load, start-stop cycles)
variables
Electrical (current, voltage, power), mechanical Laboratory calibration,
BP neural network (speed, torque), thermal (coolant temperature, Medium Low Low offline temperature [77]
stator core temperature), total 7-10 variables prediction
Electrical (current, voltage, harmonic
. components), mechanical (speed, torque, 3 L
Defg;ﬁis;dual vibration), thermal (coolant temperature, flow Very high High Low Clrl?s}sl_nlrzg;i%ine;:giﬁg;n’ [78]
g rate, ambient temperature), total 15-20 gh-p p
variables
TNN (LPTN + Electrical (loss data), mechanical (speed), Integration with thermal
data-driven) thermal (network parameters, coolant Medium Medium Medium models (improves LPTN [76]
temperature), total 6-9 variables accuracy)
Dual-channel Electrical (current/voltage time series), Dynamic condition
MCNN mechanical (speed sequence), total 12—16 High Medium Low monitoring (e.g., EV [75]
variables acceleration, deceleration)
VL. CONCLUSION Nevertheless, time and computational costs must be

A. Limitations of Current Research

1) Sensor-based temperature monitoring remains the
optimal method for verifying the accuracy of other estimation
and monitoring models in the future, and will increasingly
serve as a calibration tool. However, considerations are still
needed regarding complex circuit design, electro-magnetic
interference (EMI) resistance, integration into electric drive
systems, and proper control of manufacturing costs.

2) For temperature estimation and monitoring based on
thermal models, FEA and CFD remain important tools for
motor design in both research and commercial applications.

considered to obtain more comprehensive and realistic motor
temperature responses; low-order, single thermal network
models in the LPTN method prioritize fast computation while
neglecting the analysis of local hotspots and overall motor
temperatures.

3) In terms of stator winding calculation based on electrical
models, issues such as model accuracy and interference
caused by signal injection methods to the motor affect
temperature estimation accuracy, which remain to be
addressed.

4) Current methods for stator winding temperature
monitoring mainly focus on average temperature, and relying
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solely on a single method for monitoring results in less-than-
ideal performance in terms of stability, accuracy, and other
aspects.

5) For data-driven algorithms, the training set cannot cover
all operating conditions, resulting in poor generalization in
unknown scenarios. The long-term operation causes the model
to ‘“age”, increasing estimation errors. Also, the high
computational cost makes it difficult to embed these
algorithms in controllers.

B.  Future Perspectives

1) To mitigate the limitations inherent in sensor-based
stator winding temperature monitoring, future research should
prioritize the adoption of high-precision sensors, the
integration of contact and non-contact measurement
methodologies, and the implementation of multi-sensor
collaborative monitoring systems. Concurrently, the design of
high-precision monitoring circuits and the optimization of
their spatial layout represent directions worthy of in-depth
investigation, as they are critical to enhancing monitoring
reliability.

2) Regarding thermal modeling, the future development of
2D and 3D thermal network models demonstrates substantial
research value and promising application prospects.
Specifically, the longitudinal deployment of multi-node
configurations at key motor components to characterize
hotspot temperatures, coupled with the integration of FEA and
CFD techniques for optimizing node planning, will facilitate
the acquisition of comprehensive and accurate motor
temperature distributions.

3) For stator winding resistance calculation, the
optimization of signal injection strategies, including
parameters such as injection magnitude, timing, and interval,
holds significant potential for reducing adverse interference to
the motor operation and improving resistance calculation
accuracy. This direction is expected to provide robust
technical support for high-precision temperature estimation.

4) Aiming to address the constraints of single temperature
monitoring methods, the future adoption of multi-method
synergy, which leverages data fusion techniques to generate
more comprehensive and wide-coverage temperature datasets,
exhibits considerable prospects. This approach can effectively
compensate for the inherent shortcomings of individual
methods and enhance the overall performance of temperature
monitoring systems.

5) In terms of data-driven algorithms, the future lies in
devising online updating mechanisms, enabling models to
adapt to varying operating conditions. Additionally, exploring
lightweight models to cut computational costs also shows
great promise.
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